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ON COMPLEMENTED SUBSPACES OF (E 12)tp 

BY 

E. ODELL* 

ABSTRACT 

It is shown that if X is a complemented subspace of (E 12)~p (1 < p < oc), then X 
is isomorphic to either 12, lp, 12~ Ip or (Y 12)tf If X is a complemented subspace 
of Cp (1 < p  < ~ )  which does not contain an isomorph of (E/2)~p then X is 
isomorphic to a complemented subspace of (E CT,)~p • 12. 

O. Introduction 

We prove (Theorem 1) that if X is a complemented infinite dimensional 

subspace of Zp = (Y 12)tp (1 < p < ~), then X is isomorphic to one of the four 

spaces: 12, lp, 12~ lp or Zp. 
Pelczynski [8] has shown that every complemented infinite dimensional 

subspace of lp is isomorphic to I, and Edelstein and Wojtaszczyk [3] proved that 

a complemented infinite dimensional subspace of lp O 12 is isomorphic to either 

12, lp or lp ~) 12. Our result is thus a continuation of the work of these people (and 

many others) in the study of the isomorphic structure of complemented 

subspaces of Lp. 
It should be mentioned that G. Schechtman [11] has obtained our main result 

under the additional assumption that X has an unconditional basis. He has also 

exhibited the complex structure of Zp by exhibiting an infinite number of 

mutually non-isomorphic complemented subspaces of Lp, all of which embed 

isomorphically into Z~ [10]. 

The proof of the main result (Theorem 1) is given in Section 2. Section 1 

introduces the notation which we employ. Unfortunately, while the ideas are not 

difficult, notation necessary to present the proof of Theorem 2 is somewhat 

complicated. We urge the interested reader to view Zp as an infinite matrix space 

and construct his own diagrams and pictures as he proceeds. 
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Section 3 is an extension of the techniques of Section 2 to the Banach space Cp 

of compact operators x on l: with II x II--( trace(x*x)P/2) 'C The result proved 

(Theorem 3) is that if X is a complemented subspace of Cp (1 < p < ~) which 

contains no isomorph of Z,  then X is isomorphic to a complemented subspace of 

(E C~),° ® t2. 
We wish to thank Professors W. B. Johnson and P. Wojtaszczyk for many 

useful discussions regarding the material contained herein. In particular the 

derivation of Theorem 1 from Theorem 2 is due to Professor Wojtaszczyk and 

we wish to thank him for allowing us to reproduce here his proof. 

I. Notation 

We let (e,)7,j_i be the natural basis for Zp. Thus Zp is the Banach space of all 

scalars (a,)7~j , such that 

l~i,j ~;/a~,eolI=(~i/ (~/ a,/} ] <o~. 

If n is any integer, Q. denotes the natural projection of Zp onto the first n 

Hilbert spaces: 

j= l  i = l  

We let I be the identity operator  on Zp and O " =  I - O .  is the natural 

projection onto those Hilbert spaces past the first n. 

For any integer l we define Ot by 

This is the projection which restricts the support of a vector to those e, which lie 

"outs ide" the initial 1 by l block of the basis. 

If n < m, let 

O . , m  = Om - O . ;  o o , . ,  = Or. -- O o .  

Finally by a staircase mapping R we mean an operator  of the form 

R = O,,Ok,,,k,+ 06O,,.k~+ O,~Ok~,k~+''" 

where (l~)G, and (k,)7=, are increasing sequences of positive integers. 

It is easy to see that all of the above operators are norm 1 projections on Zp. 

Note that the range of Q. is isomorphic to 12 and the kernel of a staircase 
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mapping R is isomorphic to 120 lp. The latter follows from the fact that if (s,) is 

any sequence of integers, then (Y/~,)~p is isomorphic to a complemented subspace 

of tp and hence to l, [8]. 

X will always refer to an infinite dimensional Banach space. We use standard 

Banach space notation throughout and any terms or expressions not defined 

above may be found in the book of Lindenstrauss and Tzafriri [7]. 

2. The main result 

THEOREM I. Let X be a complemented subspace of Zp (1 < p < ~c). Then X is 

isomorphic to one of the four spaces l,, 12, l~ @ l~ or Zp. 

Theorem 1 follows from Theorem 2 and the results of [1]. 

THEOREM 2. Let X be a subspace of Zp (2 < p < ,c) which does not contain an 

isomorph of Zp and let T be a projection of Z,  onto X. Then for all e > 0 there exists 

an integer N and a staircase mapping R such that if y E Q NZ, then [[ RTy II- 
II y II. 

Proof of Theorem 1 from Theorem 2 

By duality we may assume p > 2  (the theorem is trivial for p = 2). If X 

contains an isomorph of Zp then by theorem 2.1 of [1] it contains a com- 

plemented isomorph of Zp and thus by the decomposition method of Pelczynski 

[8], X is isomorphic to Z~. We may therefore assume that X satisfies the 

hypothesis of Theorem 2. 
Let 0 < e < 1/2(1 + [] T ]]) and let R and N be as in the conclusion of Theorem 

2. R is a mapping of the form 

R = O~,Q~ .... +O~Q ..... + ' " .  

By considering the maximum of N and no and redefining R if necessary we may 

assume that n,, = N. 

Let S = I - R T ,  and note that S ( X ) C _ K e r R  which, as observed above, is 

isomorphic to lp O 12. We shall show that S is an isomorphism of Zp onto Z,. But 

then the restriction of STS ' to Ker R is a projection of Ker R onto S(X) .  Thus 

by [3], S ( X )  and hence X itself is isomorphic to lp, 12 or l, O l~. 

To see that S is an isomorphism of Z, onto Z,, write 

S = I -  R T  = I -  RTO N -  RTON. 
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Since (RTON) 2= 0, I - R T O N  is an isomorphism of Zp onto Zp with inverse 

I + RTQN. By Theorem 2, 

1[ R T O  NII < e < 1/(2111 + RTON II) 

and thus I - RTON - R T O  N = S is an isomorphism of Zp onto Z~. Q.E.D. 

The rest of this section is devoted to the proof of Theorem 2. We begin with 

some elementary remarks: 

Let (yk) be a block basis of (e~j)in Zp ( 2 < p  <~c) and let (a~) be a finitely 

non-zero sequence of scalars. Then 

) I/2 
(2.1) ~ aky~ <_- ~ l ak 121t y~ II 2 

If in addition I1 O, ,.,y~ II--11 O,-, ,y ,  II for all j, k and l then (cf. [10, p. 2921) 

(2.2) Z akyk = ( ~ [ a k  [2[[y~ [[2 ),/2. 

Our first lemma was essentially proved in [1]. Its importance to us is that our 

key lemma (Lemma 2) is derived from it. 

LEMMA 1. Let X be a subspace of Zp (2 < p < ~) and assume that for every 

integer n and K > 0 there is a normalized block basis (z~) of (e,i) with z, C X for 

all i and such that (z,) is 2-equivalent to the unit vector basis of 12. Assume  also 

that 

(2.3) sup 11Q~z, II < 1 / g .  i 
Then X contains an isomorph of Z e. 

PROOF. If Z = Y~a,z, E X then by (2.1) and (2.3) 

[[ O~z [[ = ~ a~O,z, _-< [a~ [2[[ O,z~ [[2 

( )1,2 < 1 [2 2 Ela, =< llz II. 

Thus the entire span of the z, "sits" almost entirely in O"Zp. The proof of 

Theorem 2.1 of [11 yields the lemma. Q.E.D. 

LEMMA 2. Let X and T be as in the statement of Theorem 2. Then there is an 

integer n and a K < oo so that ]:or all integers m > n and ~ > 0 there is an integer l 

such that if y E O,Zp and II y [1 < 1 then either 
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(2.4) 

or 

(2.5) 

PROOF. 

II Q,, ~Zy II ~ g II Q.Ty II. 

We shall show that if n and K fail the conclusion of the lemma, then 

there is a normalized block basis (z,) C_ X which is 2-equivalent to the unit vector 

basis of 12 and such that II Q,z, II <-<- 1 /K for all i. Since X contains no isomorph of 

Zp, Lemma 1 implies that some n and K must satisfy the conclusion of the 

lemma. 

Thus let n and K be fixed and assume that there is an m > n and a 6 > 0 such 

that no l satisfies the conclusion of the lemma. Then there is a sequence (y,) in Zp 

converging weakly to 0 with II y, II- 1 and so that for all i, y, fails both (2.4) and 

(2.5). 
Let x~ = Ty,/[[ Ty, II. Then (x,) is a weakly null sequence in X satisfying for all 

i, 

(2.6) II O°, rex, II > 6 Ill Z II 

and 

(2.7) It Q,. ,,,x, II > K 11 Q,.x, II. 

By passing to a subsequence if necessary we may assume that (x,) is a 

normalized block basis of (e~i), which by virtue of (2.6) (and p > 2) is equivalent 

to the unit vector basis of 12. We may also assume (again by passing to a 

subsequence and perturbing slightly) that if n < j <_- m then for all i and k, 

(2.8) II O,-,.,x, II = II Q , ,  ,xk II- 

By lemma 2.4 of [1] there is a normalized block basis (z~) of (x,) such that (z,) 

is 2-equivalent to the unit vector basis of 12. For each i let 

Zi ~- ~ ~kXk  
kEAi 

where (A,) is a sequence of finite disjoint subsets of N. 

By (2.1), (2.2), (2.7) and (2.8), 

Q.E.D. 
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Our next lemma, which is quite elementary, will be used below to choose N in 

the proof of Theorem 2. 

LEMMA 3. Let  T be an operator on Zp where p > 2. Then ]'or all a > 0 and 

every integer n there is an integer N = N ( a ,  n)  so that if x E O~Zp then 

(2.9) II O.Tx [1 ~ ~ I1 x II. 

PROOF. If not then there is an a > 0 and an integer n so that for all N there is 

an xN ~ O NZp with IIxN II -< 1 and 

(2.10) II Q.TxN II > a .  

Clearly there is a subsequence (xN,) of (xN) which is equivalent to the unit 

vector basis of lp. Since (TxN,) converges weakly to 0 we may assume (TxN,) is a 

block basis of (e,,). But then (2.10) implies that (TxN,) is equivalent to the unit 

vector basis of 12. This is impossible since p > 2. Q.E.D. 

We are now ready to produce the desired staircase mapping R. For the sake of 

clarity we first state one more lemma. 

LEMMA 4. Let  T be an operator on Zp (1 < p < ~) and let (6,)Lo be a given 

sequence of  positive numbers. Then there exist integers 0 = uo< u~ < . "  and 

0 = Vo < v~ < " ' s o  that irE, = O ....... Zp then[or all x ~ E, with II x II =< 1 we have 

(2.11) II o .... Tx II + II (I  - O~,_,)Tx II--< ~,. 

This holds [or all i >- 0 with the convention that Oo = 0-1 = L 

PROOF. Let Uo = Vo=0 and let ul be arbitrary. Since the unit ball of 

(I  - Ou,)Zp is compact we can find vl so that (2.11) holds for i = 0. Then choose 

u2> u~ so that if x E O~2Z, with IIx I1= < 1 then 

I[ ( I  - O~,)Tx 11 < 62/2. 

This may be done since if xj E OjZp and II x, I[ --< 1 then Tx, converges weakly to 0. 

By compactness again choose v2 > v, so that if x ~ O ..... Zp and I[ x II--< 1 then 

II O~Tx II < ~, .  

Continuing in this way we can inductively construct (u,) and (v,) so that (2.11) 

holds for all i. Q.E.D. 
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Proof of Theorem 2 

Let X and T be as in the statement of Theorem 2 and let e > 0. Let n and K 

be as given in the conclusion of Lemma 2. 

Since Q.Zp is isomorphic to 12, there is a constant c ( n ) <  ~ so that if (y,) is a 

normalized block basis of (e,i) in O.Zp then (y,) is c(n)-equivalent to the unit 

vector basis of 12. 

Choose a > 0 so that 

(2.12) Kc(n)a < e / 1 4 .  

Let N = N(a, n) satisfy the conclusion of Lemma 3 and let (&)7=o be any 

sequence of positive numbers such that &)< a/2 and for all j-> 1, 

(2.13) ~ & < 8,_,. 
i=j  

Finally let (u,), (v,) and (E,) be given by Lemma 4. 

We shall construct staircase mappings R, and R2 so that if y E [E2,]7-o A ONZp 
(respectively y ~ [E~,_,].=~ fq ONZe) and II y II- 1 then 

(2.14) IIR,Ty II < 

(respectively ]l R2Ty ]l < e/2). Theorem 2 follows by letting R be any staircase 

mapping such that 

RZp C_ R,Zp N R2Zp. 

Without loss of generality we may assume that v~ > n. Repeated application of 

Lemma 2 (for m = v2j , and 8 = 8j) yields for each j an odd integer sj which 

satisfies the following condition: 

If x E [E,]7-~, with II x II - 1 then either 

(2.15) 

o r  

(2.16) II O,. ~,_, Tx [[ ~ K ll O, Tx If. 

Clearly we may assume sl < s2 < " -  and we define R~ by 

(2.17) R~ = Oo.,Q .... + O%Ov,.,~+ 0~, 0,~.~,+.... 

We check that RI satisfies (2.14). Let y = YT=oyj E [E2,],=oO QNZp, Uy [[=< l, 

where for each j => 0 



360 E. ODELL Israel J. Math. 

s÷ 1 I Z  p (2.18) y, c [E,],%+, = 0 %  ..... ,. . 

(We let so = - 1 and recall that E, = O ....... Z,.) 

Now II yJ II =< 1 for each j and so by (2.11), (2.13) and (2.18) 

(2.19) l] (I - O,,,)Tyj II + II o ~,,+, Ty, II <= 6 .  =< 6j. 

Let us assume for the moment that the expression in (2.19) equals 0 so that 

(2.20) Ty i @ 0 % . % + Z  e for all j. 

Now by (2.17) and (2.20), 

(2.21) R,Ty j  = R,O%.%+,Ty, = O .... j ,Tyi. 

By (2.15), (2.16), (2.20) and (2.21) for each j either 

It R ,  Ty i tl <= ~i (2.22) 

o r  

(2.23) 

Thus 

[I R, Tyj II < K II O.Tyj  II. 

IIR,Tyll = Y R,Yy, 

( =< E II R,Ty, H 2 

< Kc(n)ll O.Ty ]l + 2,% 

K c ( n ) a  + a < ~ /2 .  

The second line of the inequality follows from (2.1), the third fine from (2.22) and 

(2.23), the fourth line from (2.13) and the definition of c ( n )  and the last line from 

(2.12) the choice of &,. 
The general case where we have (2.19) instead of (2.20) may be handled 

similarly and we leave the reader to check the details. 

The construction of R2 is identical (except for notational changes) to that of 

Ri. Q.E.D. 

REMARKS AND PROBLEMS. 

1. By an argument similar to the one above it can be shown that if X is a 
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complemented subspace of (E lq)t. (1 < q < p < ~c) then X is isomorphic to either 

(E lq)tp or to a complemented subspace of (Y~_~l,])~,.tq. This raises the following 

question: 

PROBLEM A. Describe the isomorphic types of complemented subspaces of 
(E l~ ),,,. 

2. Our result lends further credence to the following conjecture: 

PROBLEM B. If X is a complemented subspace of Lp (1 < p < oc) does X have 
an unconditional basis? 

It was proved in [6] that such an X has a basis. 

3. It is possible that Theorem 2 generalizes to subspaces of L,. More precisely 

we have 

PROaLEM C. Let X be a complemented subspace of L~ (2 < p < ~:) which does 
not contain an isomorph of Zp. Is X isomorphic to a subspace of lp e 127 

3. An application to Cp 

In this section we give an application of the above techniques to the space C, 

(1 < p < ~) defined in the introduction. The isomorphic properties of Cp were 

discussed at some length by Arazy and Lindenstrauss in [2] and we shall not 

attempt to repeat all that was said there. We shall recall however certain 

properties of Cp which will be used in the sequel and refer the reader to [2] and 

the references listed there for the proofs of these properties. In what follows we 

assume 1 < p < ~. 

First if we let (e~)7_~ be the unit vector basis of l: then if x E Co, x has a matrix 

representation (x(i, j)) where 

x(i,j)=(xe~,ei) (1 <= i,j < ~ ) .  

The operators (u~j)7.j=~ given by 

u,,(k, l) = ~ I  (1 _-N i,j, k, l < ~) 

form a basis for Cp when suitably ordered. 

Thus Cp is a matrix space with a natural basis and we shall use our above 

notation (e.g. O, Qn, m etc.) freely in Cp. The operators I - Or, O,, Q ~ and Q,. m 

are all norm 1 projections in Cp. Any projection On,,~ or Ot has norm N 2. 

Another natural bounded projection on C~ is the triangle projection Pr given by 
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= l x ( i ' J )  i>=j 
PTx(i,j) 

L 0 j > i  

If S is a staircase mapping on Cp then there is a staircase mapping R so that 

R (C~) (2_ S(C~) (thus R is a "smaller" staircase than S) and such that H R [[-< M 

where M is a constant depending only on [[ PT II. 
Tp denotes the range of PT and Tp is known to be isomorphic to Cp. We shall 

often find it convenient below for notational purposes to work with Tp rather 

than Cp, 
Sp = (E C~,)~p where C~, is the range of (I - O.). An argument similar to those 

of propositions 1 and 3 and lemma 2 of [2] shows that if S is a staircase mapping 

on T~ then there is a staircase mapping R on Tp with RTp C_ STp and such that 

Ker R is isomorphic to I2 O Sp. 

If E , = O  . . . .  ,Zp for n = 0 , 1 , 2 , . . . ,  then (E,) is an unconditional finite 

dimensional decomposition of Cp. Also C~ is uniformly convex and hence 

super-reflexive. 

Finally there is a constant Kp < ~ so that if (y,) is a norm 1 sequence in Cp with 

(y,) E O ....... for some increasing sequence of integers (n,) then 

12) ''2 (3.1) l ]2a iy , ]<-Ke(2]a ,  (p > 2 ) .  

In [2] it was shown that there are at least 9 mutually non-isomorphic 

complemented subspaces of C~ and the question was raised as to whether or not 

these are the only possible isomorphic types of complemented subspaces of Cp. 

The list as given there is: 12, lp, 12 ~]~ Ip, Zp, Sp, Sp 0 12, Sp ~ Zp, (Y O, Cp )t,, Cp. 
Our next theorem gives a partial answer to the above question for those 

complemented subspaces which do not contain an isomorph of Zp. 

THEOREM 3. Let X be a complemented subpace of Cp (1 < p < ~) such that X 
contains no isomorph of Zp. Then X is isomorphic to a complemented subspace Of 
Sp ~12. 

Our first lemma is similar in statement to lemma 2.5 of [1]. The proof uses an 

averaging argument. For convenience we work with Tp rather than Cp. 

LEMMA 5. Let Y be a subspace of Tp (p > 2) such that Y is isomorphic to 12. 
Then for all ~ > 0 there is an integer n and an infinite dimensional subspace Z of Y 
so that if z E Z then 

(3.2) H Q "z II--- 8 II z II. 
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PROOF Let  ~ > 0  and let (y,) be a normal ized  basis for  Y which is 

C-equivalent  to the unit vector  basis of 12. By passing to a subsequence  we may 

assume that there are integers m, < m2 < ' "  so that for all i, 

y, ~E O . . . . . . .  Tp. 

We may also assume that 

(3.3) lirn II Ok.,y, N exists for all k < I. 

Let  e > 0 .  We claim there  is an integer k = k(e) so that if l >  k, then 

II ok  ,y, II < e for all but  a finite number  of i. Indeed if this is false then for all k 

there is an l > k so that II ok,,y, II --> e for an infinite number  of i and thus by (3.3) 

for  all but  a finite number  of i. In part icular  there  are integers k~ < It < kz < 12 < 

• "" so that for each j, 

II ok,. ,,y, II--> 

for  all but  a finite number  of i. 

Let  r be any integer  and choose y~ so that 

(3.4) [[ O~,.,,y, [[ => e for j -< r. 

Now (Q~,.k,+,y~);:~ is a (finite) mon tone  basic sequence  in Cp and Cp is 

super-reflexive. Thus  by a theorem of James [5] there  is an r / >  0 and an integer s 

(7/ and s depend  only on p)  such that 

l = l l Y ' l l ~ l ~ O k " ~ " Y ' ] i = ,  

--> .7 H o~,. k. ,y,  II ~ 
1=1 

j = l  

_-> ~Er ~'~ (by (3.4)). 

If r is large enough we have a contradict ion and the claim is proved.  

Let  e > 0  be such that KpCe < ~ and let a > 0  be such that 

(3.5) K~,Cot < e/2 

and choose a sequence  of positive numbers  (a,)~=~ satisfying 

(3.6) ~ a ,  < a .  
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We shall choose a subsequence (y'~) of (y,) and an increasing sequence of integers 

(kj) satisfying the conditions: 

(3.7) Qk,~,y,= 0 for all i 

(3.8) IIQk,,k,÷,y;ll<a~ if i > j .  

To do this let y i = y, and let k~ = k (at). Let k2 ->- max (k (a2), kt) be such that 

Qk2y~ = 0 and let 

L ,  = { i : ll O~,. ~2y, ll < , ~  } . 

By the above claim, N\L~ is a finite set. Choose y~U(y,),~L, and let k3 -~ 

max (k2, k(a~)) be such that Qk3y; = 0. Again by the claim if 

L2={i:llQk~.k,y, ll<a2}, 

the set N / L 2  is finite and we choose 

In this manner we obtain the desired sequence (y',). 

By taking long averages we shall produce a normalized block basis (z~) of (y'~) 

such that 

(3.9) IIQ k'z,II <-e for all i. 

This is sufficient to prove the lemma for if z = E a,z~, then 

o k'z II-- 12 II 
i 

=< 1~, rzlf o ~'z, I( 

i~) ''~ 

K . , c  II z II 

To do this let n be such that 

(3.10) 

and define for i =>0, 

Cn ~/p-1/2 < el2 

(by (3.9)) 

(by (3.5)). 
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We must show that 1] Ok, z, 1[ =< e for all i and for simplicity of notation we shall 

assume i = 0 (the general case is identical). 

Now, 

(3.11) 

But 

(3.12) 

Also 

(3.13) 

, o,zo, i , =  o, ( i , )  

:? ( i ,;) = Ok,. k,~,y'i + Ok, k,+, 
. = .  

i = l  i = l  1 I+1  

Ok,, ' = II Ok,,k,+,y; " =< n"".  
i = 1  i = I  

"' (211o 11) =< 2 Kp k,.k,+,y} 2 by (3.1) 
i = l  \ i = i + 1  / 

n - 1  

N ~, Kpa,n'/2 by (3.8). 
i = 1  

If we put (3.11), (3.12) and (3.13) together and use the fact that 112~7y:ll~ 
C tn ~/2 we get 

I[ Oklzf.)H ~ Cn ~/2(~,~ [[p _~ o~Kpn 1/2) < ~. 

Q.E.D.  

Our next lemma is similar to Lemma 1. 

LEMMA 6. Let X be a subspace of Tp (2 < p < oo) and assume that ]:or all n and 

K there is a subspace Y C X s o  that Y i s  isomorphic to 12 and [I O.y II =< 1/K [[ y II for 

all y E Y. Then X contains an isomorph of Zp. 

PROOF. If Y is a Hilbert subspace of Tp then there is a Y' _C Y so that Y' is 

2Kp-isomorphic to 12. The proof of this statement is identical to the proof of 

theorem 3.1 in [9]. By lemma 2.2 of [4] there is a normalized basic sequence (y,) 

in Y such that lIE a~yi ]] _-> ½(El a~ 12) '/2, and the result follows from (3.1). 

Let e > 0. By the hypothesis on X and Lemma 5 there are Hilbert subspaces 

IV, _C Tp, a sequence of integers k, < k2 < " '" so that for all w E IV, 

Qk.W + Ok"+'w = 0 ,  
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and a subspace Z of X which is (1 + e)-isomorphic to W = [W,]. We may 

assume by our initial remark that each W, has a normalized basis (w7)7-1 which 

is 2Ko-equivalent to the unit vector basis of l~ and such that 

(3.14) w7 C O,7, ,7+, 

for some increasing sequence of integers (l"),=1. 

By passing to subsequences using a diagonal procedure we may also assume 

that if n ¢ m  and i and/ '  are given then there is an integer l such that 

(3.15) Otw7 = w7 and Otw 7 =0 

= " and OtwT=O) (or O,w 7 w i 

Thus by (3.14) and (3.15) (see p. 85 of [2]) if w. E W, for all n then 

This shows that W and hence Z is isomorphic to Zo. Q.E.D. 

PROOF OF THEOREM 3. Let X be a subspace of To which does not contain an 

isomorph of Z o and let U be a projection of Tp onto X. First we assume p > 2 

and let e > 0. By Lemma 6, lemma 1 of [2] and the proof of Theorem 2 above 

there is a staircase mapping R and an integer n so that if x E Q"T o then 

tt R Ux It-<- II x II- 

As we mentioned above R may be taken to have norm smaller than some 

constant which depends only on p and such that Ker R is isomorphic to So G 12. 

The same argument used in the proof of Theorem 1 from Theorem 2 shows 

that there is an isomorphism S of To onto To so that S(X)  is contained in Ker R 

which is isomorphic to 12G So. 

If 1 < p < 2 the result follows by duality. Indeed if X contains no subspace 

isomorphic to Zp then X* contains no isomorph of Zq (1/p + 1/q = 1) (we leave 

this to the reader). Thus X* is isomorphic to a complemented subspace of Sq O 12 

and so X is isomorphic to a complemented subspace of So • 12. Q.E.D. 
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